skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krishnan, Parvathy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Birchler, J (Ed.)
    Abstract Bidirectional flow of information shapes the outcome of the host–pathogen interactions and depends on the genetics of each organism. Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-transcriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcriptomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcriptome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens’ genetic variation and both organisms’ transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to the host. This showed that the differences in both organism's responses were linked to trans-expression quantitative trait loci (eQTL) hotspots within the pathogen's genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensitivity to the host’s genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more than the host. 
    more » « less